Contents

Introduction to SVM Part 2. LS-SVM

Introduction to Least-Square SVM

Introduction

Least Squares Support Vector Machine (LS-SVM) is a modified version of the traditional Support Vector Machine (SVM) that simplifies the quadratic optimization problem by using a least squares cost function. LS-SVM transforms the quadratic programming problem in classical SVM into a set of linear equations, which are easier and faster to solve.

Optimization Problem (Primal Problem)

\begin{align*} &\min_{w, b, e} \frac{1}{2} \lVert w\rVert^2 + \frac{\gamma}{2} \sum_{i=1}^N e_i^2,\\ &\text{subject to } y_i (w^T \phi(x_i) + b) = 1 - e_i, \ \forall i \end{align*} where:

  • $w$ is the weight vector.
  • $b$ is the bias term.
  • $e_i$ are the error variables.
  • $\gamma$ is a regularization parameter.
  • $\phi(x_i)$ is the feature mapping function.
  • Note that $y_i^{-1} = y_i$, since $y_i = \pm 1$.

Lagrangian Function

To solve the constraint optimization problem, we define the Lagrangian function: \begin{align*} L(w, b, e, \alpha) = \min_{w, b, e} \frac{1}{2} \lVert w\rVert^2 + \frac{\gamma}{2} \sum_{i=1}^N e_i^2 - \sum_{i=1}^n \alpha_i \left[ y_i (w^T \phi(x_i) + b) - 1 + e_i \right], \end{align*} where $\alpha_i$ are Lagrange multipliers. Then, by setting the partial derivatives of the Lagrangian with respect to $w$, $b$, $e$, and $\alpha$ to zero, we get the KKT conditions.

  • $w$: \begin{align*} \frac{\partial L}{\partial w} = w - \sum_{i=1}^n \alpha_i y_i \phi(x_i) = 0 \implies w = \sum_{i=1}^n \alpha_i y_i \phi(x_i) \end{align*}
  • $b$: \begin{align*} \frac{\partial L}{\partial b} = -\sum_{i=1}^n \alpha_i y_i = 0 \end{align*}
  • $e_i$: \begin{align*} \frac{\partial L}{\partial e_i} = \gamma e_i - \alpha_i = 0 \implies \alpha_i = \gamma e_i \end{align*} Thus, $e_i = \frac{\alpha_i}{\gamma}$
  • $\alpha_i$: \begin{align*} \frac{\partial L}{\partial \alpha_i} = - \left[ y_i (w^T \phi(x_i) + b) - 1 + e_i \right] = 0 \implies y_i (w^T \phi(x_i) + b) = 1 - e_i, i=1,\dots, N. \end{align*}

Let’s substitute $w$ and $e$:

  • $K$: kernel matrix
  • $\alpha = [\alpha_1, \alpha_2, \ldots, \alpha_n]^T$: $N\times 1$
  • $y = [y_1, y_2, \ldots, y_n]^T$.
  • $\Omega = YKY^T$, where $\Omega_{kl}= y_ky_l\phi(x_k)^T\phi(x_l)$
  • $b$: $1\times 1$

Then, we can express it compactly \begin{align*} & Y(KY^T\alpha+b\mathbf{1})-\mathbf{1}+\frac{\alpha}{2\gamma} = 0\\ & \mathbf{1}^TY\alpha = 0. \end{align*} \begin{align*} \end{align*}

By using the expression of $\alpha$ and $b$, we get \begin{align*} \begin{bmatrix} 0 & y^T \\ y & \Omega + \frac{1}{\gamma} I \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ 1_n \end{bmatrix} \end{align*} Note that the dimension of the matrix on the left-hand side is $(N+1)\times (N+1)$. Once we have $b$ and $\alpha$ by solving the linear system, the decision function for a new input $x$ can be obtained by: \begin{align*} f(x) = \sum_{i=1}^n \alpha_i y_i K(x_i, x) + b. \end{align*}

Example

Suppose we have three training examples with feature vectors $x_1, x_2$, and $x_3$, and corresponding labels $y_1, y_2$, and $y_3$. The kernel matrix $\Omega$ is defined as:

\begin{align*} \Omega_{ij} = y_i y_j K(x_i, x_j) \end{align*} The dual form is: \begin{align*} \begin{bmatrix} 0 & y^T \\ y & \Omega + \frac{1}{\gamma} I \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ e \end{bmatrix} \end{align*}

  • $y = \begin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix}$
  • $\alpha = \begin{bmatrix} \alpha_1\ \alpha_2 \ \alpha_3 \end{bmatrix} $
  • $e = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$
  • $I$ is a $3 \times 3$ identity matrix

Then, the $\Omega$ is given by \begin{align*} \Omega = \begin{bmatrix} y_1 y_1 K(x_1, x_1) & y_1 y_2 K(x_1, x_2) & y_1 y_3 K(x_1, x_3) \\ y_2 y_1 K(x_2, x_1) & y_2 y_2 K(x_2, x_2) & y_2 y_3 K(x_2, x_3) \\ y_3 y_1 K(x_3, x_1) & y_3 y_2 K(x_3, x_2) & y_3 y_3 K(x_3, x_3) \end{bmatrix} \end{align*}

Now, the complete matrix equation is:

\begin{align*} \begin{bmatrix} 0 & y_1 & y_2 & y_3 \\ y_1 & \Omega_{11} + \frac{1}{\gamma} & \Omega_{12} & \Omega_{13} \\ y_2 & \Omega_{21} & \Omega_{22} + \frac{1}{\gamma} & \Omega_{23} \\ y_3 & \Omega_{31} & \Omega_{32} & \Omega_{33} + \frac{1}{\gamma} \end{bmatrix} \begin{bmatrix} b \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \end{align*}

This can be written explicitly as: \begin{align*} \begin{bmatrix} 0 & y_1 & y_2 & y_3 \\ y_1 & y_1^2 K(x_1, x_1) + \frac{1}{\gamma} & y_1 y_2 K(x_1, x_2) & y_1 y_3 K(x_1, x_3) \\ y_2 & y_2 y_1 K(x_2, x_1) & y_2^2 K(x_2, x_2) + \frac{1}{\gamma} & y_2 y_3 K(x_2, x_3) \\ y_3 & y_3 y_1 K(x_3, x_1) & y_3 y_2 K(x_3, x_2) & y_3^2 K(x_3, x_3) + \frac{1}{\gamma} \end{bmatrix} \begin{bmatrix} b \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \end{align*} The solution to this matrix equation provides the values of $b$ and $ \alpha_1, \alpha_2, \alpha_3$, which are then used to construct the decision function: \begin{align*} f(x) = \sum_{i=1}^3 \alpha_i y_i K(x, x_i) + b \end{align*}